Automatised analysis of emergency calls using Natural Language Processing

Detta är en Kandidat-uppsats från Göteborgs universitet/Institutionen för data- och informationsteknik

Sammanfattning: The operators at SOS Alarm receives thousands of calls each day at the different emergency medical communication centres, owned by SOS Alarm, all over Sweden. A subset of these calls contain room for improvement and the operators could learn to improve from these calls. The work offinding – and analysing – these calls is however too tedious to be done by a human. This thesis presents four automatised solutions to this issue. The human factor is removed and the job offinding and analysing the calls is done by a computer.

It is shown that it is possible to partly automatise the analysis, but the methods used have different strengths and weaknesses. Word frequency analysis is proven adequate at key word lookup.Similarity comparisons of various aspects of the calls are proven good at classifying calls,but less good at answering specific questions. Comparing parse trees seems promising, but the technology needs more work before it is ready to be used.

The solutions presented show that it could be possible to automatise the analysis of the calls given that the right questions are asked and the results from these are used appropriately.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)