Kvävestatus och risk för nitrifikation i två avverkade skogsområden i Halland

Detta är en Uppsats för yrkesexamina på avancerad nivå från Institutionen för geovetenskaper

Sammanfattning: Nitrogen deposition leads to environmental damage in areas where the nitrogen deposition is high. Southwest Sweden receives an annual nitrogen deposition of up to 20 kg N/ha. Nitrogen that is not assimilated by the vegetation is accumulated in the soil, which may lead to nitrogen saturation and an elevated risk of nitrogen leaching. Nitrogen leaching from forest areas in southern Sweden has proven to be higher than from agricultural areas, which have been thought to be the main contributors to elevated nitrogen levels in rivers and lakes. The amount of nitrogen that leaches depends on the fraction of the total nitrogen in the soil that consists of nitrate, since nitrate is easily transported through the soil. Nitrogen leaching increases after clear-cutting since the uptake by vegetation is greatly reduced. In this study the soil chemistry of two clear-cut spruce stands in Halland, in southwest Sweden, has been analyzed. A previous study in these areas has indicated higher nitrate concentrations in the groundwater in one of the areas and thus a greater nitrogen leaching. Nitrogen deposition in the two areas is estimated to be the same and therefore the soil chemistry has been analyzed to evaluate if differences in the soil can have resulted in differences in the nitrate concentration in the groundwater. The hypothesis is that the area with higher nitrate concentrations in the groundwater has properties more favorable for nitrification, which would be especially apparent in a lower carbon to nitrogen ratio. The pH and storage of nitrate, ammonium, total carbon, total nitrogen and exchangeable cations was analyzed in soil samples from both areas. In addition, a study of stand properties and previous use of the areas was made. The analyses performed in this study indicate that the soil properties could not explain the differences in nitrate concentration in the groundwater. The differences found between the areas were that the area with lower nitrate concentrations in the groundwater had higher nitrate and ammonium concentrations and higher pH in the soil. The reason for this might be that the soil in this area has larger capacity to bind elements. The fact that the soil samples were sampled during different seasons probably had a major effect on these results. The history and stand properties of the two areas were similar. According to site index one area was more fertile, which benefits nitrification. This fact was not confirmed by the analyses, but it probably caused the nitrification rate to be higher in this area.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)