Modellering av byggnaders skyddskoefficienter vid utsläpp av radioaktiva ämnen

Detta är en Uppsats för yrkesexamina på avancerad nivå från Institutionen för geovetenskaper

Sammanfattning: I händelse av ett radioaktivt utsläpp är det viktigt att ha bra beredskap med skyddsåtgärder som bidrarmed det bästa skyddet för den utsatta delen av befolkningen. Direkt efter ett utsläpp utgör exponering viainandning det största problemet eftersom partiklar och gaser ännu inte hunnit deponerats på mark, imoln och så vidare. Byggnader bidrar med ett skydd mot inhalation eftersom luften utanför och inutibostaden byts ut relativt långsamt. Hur stor del av föroreningen som tar sig in till inomhusluften och hurlång tid detta tar är viktig information för att avgöra om befolkningen är tillräckligt skyddade inutibyggnader eller om evakuering bör ske. I detta arbete har kunskap från befintlig litteratur samtmodellering använts för att beskriva generella förhållanden med vilka en förorening kan ta sig in i och utur en byggnad. Differentialekvationer med huvudprocesser och ingående parametrar har studerats för attge en uppfattning om vilket skydd en byggnad kan ge mot inhalation av partiklar och gaser i ettradioaktivt moln. Olika typer av ventilationssystem med eller utan tillhörande partikelfilter diskuteras ochinhalationsdos för olika åldersklasser och aktivitetsnivåer undersöks.Genom att jämföra mängd förorening i luften utanför mot inuti en byggnad talar man om byggnadensskyddskoefficient. De tre huvudprocesser som styr transporten är ventilation, penetration samtdeponering. Ventilationen uppkommer av luftutbytet mellan inomhus‐ och utomhusluften. Ventilationenstyrs antingen mekaniskt eller naturligt. Penetrationen beskriver hur stor andel av partiklarna ellergaserna som tar sig in över byggnadens fasad och deponeringen hur partiklar och gaser tenderar attfastna på de ytor de passerar under transporten. Deponeringen sker även på samtliga ytor inutibyggnaden. Efter att ämnen deponerats kan de resuspendera och åter komma upp till luften vilketmöjliggör för inandning innan de åter kan deponera på tillgängliga ytor. Deponeringen ses som en sänkamedan resuspensionen fungerar som en källa för inomhuskoncentrationen.En av de faktorer som påverkar skyddskoefficienten till störst del är partikeldiametern eftersomdeponerings‐ och penetrationsprocessen är starkt storleksberoende. Stora och små partiklar deponeraslättare och kvar finns den så kallade mellanfraktionen, 0,2‐1 μm i diameter, som håller sig i luften längsttid. Gaser rör sig lätt in och ut ur byggnaden och hindras inte av partikelfilter. Däremot finns särskildafilter att installera som hindrar gaser att ta sig in, exempelvis kolfilter. Sönderfallshastigheten hos de olikaradionukliderna påverkar även skyddsfaktorn. Då ämnena sönderfaller minskar koncentrationen i luften,sönderfallet är då en sänka för koncentrationen inomhus. Ventilationshastigheten har en viss påverkan påskyddskoefficienten. En ökad ventilationshastighet leder till att koncentrationen inomhus kommer att gåmot penetrationsfaktorn. Detta gäller om ventilationshastigheten kan antas vara mycket större ändepositionshastigheten. Ventilationssystem utrustade med partikelfilter kan hålla en stor del avföroreningen utanför byggnaden. Partikelfiltren har olika effektivitet och klassificeras som grov‐, mediumsamtfinfilter. En hög filtereffektivitet har stor påverkan på skyddskoefficienten. Ett filter skall däremotses som en färskvara. De kräver underhåll och bör bytas ut i tid för att kunna fungera som de ska.Inhalationsdosen beror av partikelstorlek eftersom deponeringen som sker i luftvägarna fungerar påliknande sätt som i transporten in och ut ur byggnaden. Mellanfraktionen har tendens att tränga djupt nedi lungorna efter inandning. Effekten från inhalation beror på en individs ålder, storlek och fysisk aktivitet.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)