A Patient Identification System using RFID and IEEE 802.11b Wireless Networks

Detta är en Master-uppsats från KTH/Kommunikationssystem, CoS

Sammanfattning: The recent increased focus on patient safety in hospitals has yielded a flood of new technologies and tools seeking to improve the quality of patient care at the point of care. Hospitals are complex institutions by nature, and are constantly challenged to improve the quality of healthcare delivered to patients while trying to reduce the rate of medical errors and improve patient safety. Here a simple mistake such as patient misidentification, specimen misidentification, wrong medication, or wrong blood transfusion can cause the loss of a patient’s life. Misidentification of patients is a common problem that many hospitals face on the daily basis. Patient misidentification is one of the leading causes of medical errors and medical malpractice in hospitals and it has been recognised as a serious risk to patient safety. Recent studies have shown that an increasing number of medical errors are primarily caused by adverse drug events which are caused directly or indirectly by incorrect patient identification. In recognition of the increasing threat to patient safety, it is important for hospitals to prevent these medical errors from happening by adopting a suitable patient identification system that can improve upon current safety procedures. The focus of this master’s thesis is the design, implementation, and evaluation of a handheld-based patient identification system that uses radio frequency identification (RFID) and IEEE 802.11b wireless local area networks to identify patients. In this solution, each patient is given a RFID wristband which contains demographic information (patient ID number, ward number, hospital code, etc.) of the patient. A handheld device equipped with IEEE 802.11b wireless local area network connectivity and a RFID reader is then used by the medical staff to read the patient’s wristband, identify the patient, and access the relevant records of this patient. This work was carried out at the Department of Medical Physics and Bioengineering at the University College Hospital Galway (UCHG), Ireland and the National University of Ireland, Galway.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)