Hardware optimizations and solutions for wireless low power kinetic energy applications

Detta är en Master-uppsats från KTH/Skolan för datavetenskap och kommunikation (CSC)

Sammanfattning: The number of IoT (Internet of Things) devices available on the market has been growing rapidly in the past few years and is expected to grow even more in the years to come. These IoT devices are predominantly in the form of very small wireless peripherals with low power consumption making them suitable for running over extended periods of time using only coin cell batteries. In this degree project, conducted at Shortcut Labs AB, we investigate whether or not some of these devises could be suitable for being powered exclusively by kinetic energy without the need for any long term interim power storage, such as batteries or super capacitors. If this is possible it would not only remove the hassle of having to replace batteries at regular intervals, which is important if the devices are positioned at remote locations, but it could also help to reduce the amount of battery waste in the long run. For the sake of this project we have designed a hardware circuit that is able to communicate with other devices using a custom built protocol running on top of the Bluetooth Low Energy standard. This circuit does not require a battery and could potentially be used for many years without the need for any maintenance. To demonstrate this, the technology has successfully been applied to a concept product in the form of a dimmer wheel that can be used to change the brightness or color of Smart Home light bulbs. This is achieved by using a small electric motor as a generator in combination with an energy harvesting circuit in order to generate a stable voltage suitable for use with a wireless module.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)