Inference of buffer queue times in data processing systems using Gaussian Processes : An introduction to latency prediction for dynamic software optimization in high-end trading systems

Detta är en Master-uppsats från KTH/Skolan för datavetenskap och kommunikation (CSC)

Sammanfattning: This study investigates whether Gaussian Process Regression can be applied to evaluate buffer queue times in large scale data processing systems. It is additionally considered whether high-frequency data stream rates can be generalized into a small subset of the sample space. With the aim of providing basis for dynamic software optimization, a promising foundation for continued research is introduced. The study is intended to contribute to Direct Market Access financial trading systems which processes immense amounts of market data daily. Due to certain limitations, we shoulder a naïve approach and model latencies as a function of only data throughput in eight small historical intervals. The training and test sets are represented from raw market data, and we resort to pruning operations to shrink the datasets by a factor of approximately 0.0005 in order to achieve computational feasibility. We further consider four different implementations of Gaussian Process Regression. The resulting algorithms perform well on pruned datasets, with an average R2 statistic of 0.8399 over six test sets of approximately equal size as the training set. Testing on non-pruned datasets indicate shortcomings from the generalization procedure, where input vectors corresponding to low-latency target values are associated with less accuracy. We conclude that depending on application, the shortcomings may be make the model intractable. However for the purposes of this study it is found that buffer queue times can indeed be modelled by regression algorithms. We discuss several methods for improvements, both in regards to pruning procedures and Gaussian Processes, and open up for promising continued research. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)