Skjuvhållfasthetsbestämning i kohesionsjord : en del av ett utvecklingsprojekt för en ny vingförsöksutrustning

Detta är en Uppsats för yrkesexamina på avancerad nivå från Luleå tekniska universitet/Institutionen för samhällsbyggnad och naturresurser

Sammanfattning: The report is part of the development project run by Ingenjörsfirman Geotech AB, where some of the field investigations were carried out in collaboration with Bohusgeo AB. The aim of the thesis is to do field investigations with the new Vane Geotech Nova (Nova-vane) equipment, and compare the results with known and proven methods. The vane test is an in situ method that determines the undrained shear strength, for example for clay soils. Eight tests have been performed with the Nova-vane and they have been compared with the Nilcon-vane, an electronic Nilcon-vane, a CPT-probing and Direct shear tests in the laboratory. Parameter determination has been done with CRS-tests and ordinary laboratory routine examination. According to earlier research, the time for failure, waiting time and rotational speed are parameters that have been tested in order to know how they affect the evaluated shear strength in clay soils. Previous investigations from 1950 to 1990 show that the parameters mentioned above have a major impact on the evaluated shear strength. When comparing already known evaluation methods for the undrained shear strength, it has been found that the Nova-vane generates shear strength measurements are far too low. The reason why the Nova-vane shows lower undrained shear strengths than other methods may be due to a number of factors. The analysis of the tests shows that the rotation speed has not been constant, as the rotation is becoming faster and faster, the time to failure varies between a few seconds to several minutes over the recommended time to failure. Another major factor is the deviating angle compared to the vertical plane, the vane has been driven down with. In the eight tests, the rotational speed has been a difficult parameter to control. The electric engine used, a modified Geotech EVT 2000 electric vane instrument, could only apply different energies and are normally used for 22 mm probe rods. Which specific applied force on the rods generating the correct rotational speed, depends entirely on the properties of the clay. When 36 mm probe rods are used together with the electric engine the rotational speed is even more difficult to control. According to the SGF recommended standard from 1993 states that the time to failure of a vane test should be between 2 and 4 minutes, from the time the vane is activated. It primarily depends on the speed of rotation, which means that the time for failure was also a difficult parameter to control. The angle with which the Nova-vane is driven increases with depth to about 30° at 30 meters. While the angle of CPT-probing increases only 5° at 30 meters. The driven angle could have significance to the shear strength, although it is difficult to conclude what kind. The Nova-vane is the only vane borer that can measure which angle it is driven down with. The increasing angle is assumed to depend on the geometry of the instrument and not on the properties of the clay. The conclusion is that the measurement with the Nova-vane gives lower values than the other methods. However, the range of values proves only small differences down to the depth of 20 meters. The system as a whole is working with an acceptable accuracy, although a stronger engine and a more precise control of the engine speed is needed. More tests have to be done to determine how the Nova-system can be designed and how the investigation should be performed to get equal values as other proven methods. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)