Mineral Chemistry and Parageneses of Oxyborates in Metamorphosed Fe-Mn Oxide Deposits

Detta är en Master-uppsats från Uppsala universitet/Institutionen för geovetenskaper

Sammanfattning: Oxyborate minerals can represent the most important sink for boron in silica-undersaturated mineralised systems such as those of the Långban-type. Yet, their distribution, characteristics and parageneses are still not completely known. In order to test the hypothesis that the chemical compositions of oxyborates are essentially reflecting their local environments, the present study was set up. Additional observations regarding their assemblages, textures and structure would allow for a broader understanding of their formation and paragenetic interrelationships. A representative selection of Mg-(Fe-Mn) oxyborates and associated minerals have been characterised using optical microscopy, field emission electron probe microanalysis (FE-EPMA) with wavelength dispersive spectroscopy (WDS), and Raman spectroscopy. The studied samples are from a suite of carbonate-hosted Fe-Mn oxide deposits in the western part of the Palaeoproterozoic Bergslagen ore province, in south central Sweden and include the minerals blatterite [(Mn2+,Mg)35(Mn3+,Fe3+)9Sb5+3(BO3)16O32], fredrikssonite [Mg2(Mn3+,Fe3+)BO5], chemically variable ludwigites [c. (Mg,Fe2+)2Fe3+BO5], orthopinakiolite [(Mg,Mn2+)2Mn3+BO5] and pinakiolite [(Mg,Mn2+)2(Mn3+,Sb5+)BO5]. The results show a correlation between the cation distribution in the oxyborates fredrikssonite, ludwigite, orthopinakiolite as well as pinakiolite, and their associated metal oxides consisting of hausmannite and spinel group minerals. This combined with the textural relationships of the phases suggests that the bulk contents of magnesium, manganese and iron in the oxyborates were sequestered from these pre-existing metal oxides. The chemically broad range of hausmannite and spinel group minerals associated with specifically fredrikssonite and ludwigite agrees with their more frequent general occurrence, compared to orthopinakiolite and pinakiolite. Raman spectroscopy verified the structural character of the studied oxyborates and indicates a potential connection between the presence of manganese and whether local BO33- ions are allowed to be positioned in symmetry sites which result in a split E´ mode. The results from this study contribute to the understanding of this family of minerals and their potential diversity in mineralised systems, and form a fundamental prerequisite for their potential application for boron isotope studies.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)