Dynamisk dimensionering av hög träbyggnad med horisontalstabiliserande kärna av KL-trä och prefabricerade volymelement

Detta är en Uppsats för yrkesexamina på avancerad nivå från Luleå tekniska universitet/Industriellt och hållbart byggande

Sammanfattning: Efterfrågan på höga byggnader ökar i städerna och eftersom hållbarhet är ett viktigt ämne i samhället har intresset för och användandet av trä i höga byggnader ökat de senaste åren. Träbyggnaders flexibilitet och låga vikt gör att svängningar orsakade av horisontella dynamiska vindlaster i bruksgränstillståndet kan uppfattas som störande av personer som vistas i byggnaden och därav bli styrande för dimensioneringen av byggnaden. I detta examensarbete studeras en hybridlösning som använder sig av en vertikalt bärande och horisontellt stabiliserande kärna av KL-trä samt byggs upp med lätta prefabricerade volymelement. Syftet med arbetet är att ta fram en lämplig uppbyggnad och studera dess dynamiska egenskaper samt studera hur förändringar av kärnans parametrar och uppbyggnad påverkar de dynamiska egenskaperna. Målet är att erhålla svar på maximalt antal våningar för respektive alternativ uppbyggnad samt utöka förståelsen på kärnans inverkan på byggnadens dynamiska respons. Byggnaden modelleras upp enligt fyra olika huvudstrukturer där Struktur 1 är byggnadens grundmodell enligt dess enklaste uppbyggnad, inom Struktur 2 varierar KL-träkärnans väggtjocklek, inom Struktur 3 varierar KL-träkärnans storlek och inom Struktur 4 adderas horisontalstabiliserande väggar till KL-träkärnan. I alla modeller antas volymelementen ej bidra till byggnadens globala stabilitet och därför modelleras de in som massor. De olika strukturerna modelleras upp i FEM-programvaran Robot Structural Analysis där en modalanalys utförs för att erhålla byggnadens egenfrekvenser och svängningsmoder. Därefter beräknas toppaccelerationen hos svängningarna, orsakade av dynamisk vind, på golvbjälklaget i byggnadens översta våning ut för hand för att jämföras mot komfortkrav i ISO 10137. Resultaten visar att byggnaden generellt sett har låga egenfrekvenser vilket beror på en förhållandevis hög massa och relativt låg styvhet hos strukturen. Struktur kan uppföras till 20 våningar under de förhållanden som använts i beräkningarna. Förändringar i kärnans tjocklek förstyvar byggnaden något vilket gör att Struktur 2 bör kunna uppföras ett par våningar högre. Förändringar i kärnans storlek visar sig ha en relativt stor påverkan på byggnadens styvhet och därför kan Struktur 3 uppföras till 24 våningar då kärnan är 25 % större i alla riktningar. För Struktur 1, 2 och 3 sker svängning först i y-led, sedan i x-led och sist som vridning kring z-axeln. För Struktur 4 visar sig styvheten påverkas mycket av att stabiliserande väggar adderas till kärnan, dock kan även svängningsriktningar för första och andra svängningsmod förändras och det bör kontrolleras så att problem med vridningssvängningar inte uppkommer. Om stabiliserande väggar läggs till i y-riktning, x-riktning samt del av fasad kan Struktur 4 uppföras hela 28 våningar, med förhållandevis god marginal. Som förslag på fortsatt arbete bör en statisk dimensionering utföras för att vidare utreda om uppbyggnaden är lämplig vad gäller bland annat tvärsnittstorlekar och infästningar. Dessutom bör det undersökas om och hur volymelementens styvhet kan användas för att bidra till strukturens globala stabilitet. Då kärnans storlek har en stor påverkan på byggnadens styvhet bör det utredas ifall lämpliga planlösningar kan arbetas fram med större eller till och med dubbel kärna för att sedan utföra en dynamisk dimensionering på strukturen. Då planlösningen enligt denna och andra studier bedöms ha potential för att bygga högt, vore en jämförelse av olika planlösningar intressant där förslagsvis byggnadens yttermått och form samt placering och antal stabiliserande KL-träkärnor varierar.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)