Sökning: "deep neural networks"

Visar resultat 1 - 5 av 301 uppsatser innehållade orden deep neural networks.

  1. 1. Motion Prediction of Surrounding Vehicles in Highway Scenarios With Deep Learning

    Master-uppsats, KTH/Skolan för elektroteknik och datavetenskap (EECS)

    Författare :Samir Khays; [2019]
    Nyckelord :;

    Sammanfattning : Anticipating the future positions of the surrounding vehicles is a crucial task foran autonomous vehicle in order to drive safely. To foresee complex manoeuvresfor longer time horizons, a framework that relies on high-level properties ofmotion and is able to incorporate, e.g. contextual features, is needed. LÄS MER

  2. 2. Hierarchical Clustering of Time Series using Gaussian Mixture Models and Variational Autoencoders

    Master-uppsats, Lunds universitet/Matematisk statistik

    Författare :Per Wilhelmsson; [2019]
    Nyckelord :Clustering; Deep Learning; Machine Learning; Time Series; Variational Autoencoders; Gaussian Mixture Models; Mathematics and Statistics;

    Sammanfattning : This thesis proposes a hierarchical clustering algorithm for time series, comprised of a variational autoencoder to compress the series and a Gaussian mixture model to merge them into an appropriate cluster hierarchy. This approach is motivated by the autoencoders good results in dimensionality reduction tasks and by the likelihood framework given by the Gaussian mixture model. LÄS MER

  3. 3. Malignant Melanoma Classification with Deep Learning

    Master-uppsats, KTH/Medicinteknik och hälsosystem

    Författare :Jakob Kisselgof; [2019]
    Nyckelord :Melanoma classification deep learning;

    Sammanfattning : Malignant melanoma is the deadliest form of skin cancer. If correctly diagnosed in time, the expected five-year survival rate can increase up to 97 %. Therefore, exploring various methods for early detection can contribute with tools which can be used to improve detection of disease and finally to make sure that help is given in time. LÄS MER

  4. 4. Providing Mass Context to a Pretrained Deep Convolutional Neural Network for Breast Mass Classification

    Kandidat-uppsats, KTH/Skolan för elektroteknik och datavetenskap (EECS); KTH/Skolan för elektroteknik och datavetenskap (EECS)

    Författare :Lovisa Montelius; George Rezkalla; [2019]
    Nyckelord :Deep learning; Convolutional neural network; Transfer learning; Computer-aided diagnosis; Breast cancer; Breast mass classification; Breast mass context; ;

    Sammanfattning : Breast cancer is one of the most common cancers among women in the world, and the average error rate among radiologists during diagnosis is 30%. Computer-aided medical diagnosis aims to assist doctors by giving them a second opinion, thus decreasing the error rate. LÄS MER

  5. 5. Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems

    Master-uppsats, KTH/Skolan för elektroteknik och datavetenskap (EECS)

    Författare :Sai Shyamsunder Kamat; [2019]
    Nyckelord :anomaly; cyber security; evaluation; machine learning; radial basis function; random forest classifier; supervised learning; anomali; cybersäkerhet; utvärdering; maskininlärning; radialbaserad funktion; slumpmässig skogsklassificering; övervakad inlärning;

    Sammanfattning : In the 21st century, information is the new currency. With the omnipresence of devices connected to the internet, humanity can instantly avail any information. However, there are certain are cybercrime groups which steal the information. LÄS MER