Trajectory Optimization for Aircraft Evasive Maneuvering

Detta är en Master-uppsats från KTH/Flygdynamik

Författare: David Ahlmark; [2017]

Nyckelord: ;

Sammanfattning: The aim of this work has been to identify hidden parameter value patterns during evasive maneuvering for a typical jet fighter. The work has created a performance model for a fighter aircraft and this model has then been combined with a missile model to simulate an enemy attack. By doing different kinds of simulations with a certain amount of predetermined scenarios, different outcomes could be evaluated when making small changes in the maneuvers during each specific scenario. The span of parameters that conducts a flying airplane’s trajectory is vast and the evaluation of different decisions that is up on the table for a pilot in a given situation might give new insights when optimizing tactical air fighting scenarios.After evaluating different scenarios with different input values in form of different turn and climb angles etc, it was clear that small changes resulted in vast differences regarding the outcome, when being chased by the missile. By analyzing the results, it can be concluded that there are underlying patterns regarding controllable parameter values when the airplane tries to get rid of the chasing missile. For example; one section in this work describes that by keeping a straight flight path for a certain amount of seconds after a specified value of turn angle - results in survival of the attack. Keeping level flight for too many seconds however has a lethal outcome. The results seem also to follow a continuous - non-randomized - pattern. This type of detailed analysis could be used to help a pilot to optimizise the performance of the maneuver.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)