Microgrid Safety and Protection Strategies

Detta är en Master-uppsats från KTH/Elektroteknisk teori och konstruktion

Sammanfattning: One of the challenging issues with the Microgrid is that the bidirectional power flow providedby the distributed generator (DG) which modify the fault current level. Furthermore, theinverter based-renewable energy source (IB-RES) limits the total fault current contributionto the grid due to its thermal capability. Since Microgrid should be able to operate in gridconnectedand islanded mode, protection strategies are needed to solve this challenging issue.By only having IB-RES and battery storage system, the fault condition and normaloperation cannot be distinguished. Apart from fault clearing issue, there is a consideration tostudy the fault isolation in the Microgrid under the limited fault current provided by IB-RES.To have fault isolation capability, the intelligent electrical device (IED) is needed. The firststep is to find a method that can detect a fault under the fault level modification constraint.This thesis presents a zero and negative sequence current protection to detect a fault.However, to make it selective, this protection will be applied directionally. It is common thatthe distribution grid has unbalanced load operation, thus providing zero and negativesequence component in the grid. To apply the directional zero and negative sequence currentprotection, the unbalanced load flow is simulated to distinguish the fault and normaloperation under unbalanced load condition.Safety and regulation are discussed briefly in this thesis. It is important that each of theIB-RES has fault ride-through (FRT) capability that follows a regulation. However, thisregulation is expected to have a coordination with the proposed protection in the Microgridso the reliability, selectivity, and sensitivity can be achieved in grid-connected and islandedmode. This thesis shows the coordination between fuses, IED, and inverter FRT capability.After providing a protection strategy, the adaptability of the proposed protection isassessed regarding of Microgrid expansion. The result shows that by applying the schemeand following the grading margin requirement that is presented in this thesis, the Microgridexpansion will not disrupt the proposed protection coordination. Since it is known that thedistribution grid is expanding its load capacity and microgeneration in continuous basis, it isconvenient that the proposed protection in the IED is expected to be adaptable, means that ithas a fixed IED setting when the grid is expanded. The analysis is performed by electrical transient analysis program (ETAP) and MatlabSimulink. The short circuit analysis, sequence-of-operation, and unbalanced load flow aresimulated by ETAP, while the protection stability is simulated by Matlab Simulink.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)