Detektion av fasta ekon vid vindmätning med SODAR

Detta är en Kandidat-uppsats från Högskolan i Jönköping/JTH, Datateknik och informatik

Sammanfattning: Purpose – The purpose of this thesis was to facilitate the search for echoes caused by fixed objects, so called fixed echoes, when using SODAR-technique for wind measurements. Furthermore, it was investigated how fixed echoes in measurements can change based on different conditions such as: the angle of the sound beam towards the object causing the echo, the output frequency of the instrument, the air temperature and relative humidity. Method – Data was recorded on a test site in southern Sweden during February - April 2017 using two different SODAR-instruments, AQ500 and AQ510, manufactured by AQSystem. Experiments were conducted by installing the instruments at different distances and in different angles next to a met mast. The data recorded was examined for fixed echoes both by using Excel and manually and compared for correlation with the parameters mentioned. A software that uses the r-squared value for a power function adapted to the collected data was developed to detect fixed echoes. Findings – The result of the study showed that the angle of the SODAR-instrument sound beam direction compared to the met mast has a relatively high impact on the number of fixed echoes that can be easily detected. When a sound beam is aimed directly at the fixed object the echoes increased significantly compared to when the sound beams were aimed next to the mast. AQ510, that uses a higher measurement frequency than the AQ500, was less susceptible to fixed echoes when doing simultaneous measurements. Both temperature and relative humidity showed low correlation to the number of fixed echoes so the implication was that these atmospherical parameters do not affect the emergence of fixed echoes. The r-squared value for a power function adapted to the wind data turned out to be a good measure for the magnitude of a fixed echo. When the correlation coefficient of the r-squared value and the percentage of wind profiles that contained fixed echoes were calculated the value was 0,995 which is a strong positive correlation. The r-squared value is compared with a threshold value (which depends on the number of wind profiles in the data to be analysed) to determine if a fixed echo is causing disturbance. Another control is also made in the software where the measured wind values are compared with the values from the power function to find minor deviations possibly caused by fixed echoes. Implications – When the result of the thesis is considered it can help the person installing the instruments as well as the developers of the SODAR-instruments. The person installing the system can notice that fixed echoes can be decreased by rotating the instrument. The result showed the developer that by carefully selecting the right frequency the number of fixed echoes can be decreased. If neither the temperature nor the relative humidity has any impact on fixed echoes it shows the developer that the instrument can be used in varying climates. The result of the study can also be of service to wind analysts using SODAR-equipment. The software developed can be used to find fixed echoes in a more efficient way than was previously possible. Limitations – The data recordings took place during a limited period during late winter, early spring in the southern parts of Sweden which means that neither extremely high or low temperatures were measured during the campaign. The thesis is further limited by only using ”multiple axis” SODAR-instruments from AQSystem. Keywords – SODAR, wind measurements, fixed echoes, measurement instrument.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)