Finger-jointing of acetylated Scots pine using a conventional MUF resin

Detta är en Master-uppsats från KTH/Byggnadsmaterial

Sammanfattning: Acetylation of wood is a modification technique that chemically alters the wood substance and enhances several properties of wood. The basic principle is to impregnate wood with acetic anhydride to react and replace OH-groups with acetyl groups in the wood cell wall. In this way, the hygroscopicity of the modified wood is significantly reduced resulting in increased dimensional stability and durability compared with unmodified wood.The objective of this work was to study finger-jointing of acetylated Scots pine (Pinus sylvestris L.) using a conventional melamine urea formaldehyde (MUF) adhesive. Two different types of acetylated pine specimens were investigated, acetylated pine sapwood (APS) and acetylated juvenile pine (AJP), the latter originating from young forest thinning trees (ca 20-30 years). The goal was to evaluate the bending strength, i.e. modulus of rupture (MOR), of such finger-jointed samples, in particular when the acetylated wood was combined with unmodified wood, in this case, Norway spruce (Picea Abies L. Karst) (US). The finger-jointing were performed at Moelven Töreboda by applying their existing industrial procedures. In total, five different of finger jointed sample groups were prepared combining the different specimens: APS-APS, AJP-AJP, US-US, APS-US, and AJP-US. Standardized procedures were used to determine the MOR of the finger-jointed samples, both unexposed at the factory condition state and after a water-soaking-drying cycle. In addition, the experiments also included determination of the moisture content (MC), density, and modulus of elasticity (MOE) (in bending along the grain) of the individual specimens.At the unexposed state, the APS-APS samples showed the highest MOR of 63,1 MPa, while those of the AJP-AJP showed the lowest value of 42,4 MPa. The corresponding values for the US-US, AJP-US and APS-US samples was 56,7, 47,5 and 46,9 MPa, respectively. In contrast to a typical wood failure for the US-US samples, a low amount of wood failure was observed in all cases involving the acetylated wood, indicating a low adhesive anchoring in the wood substrate at the finger-joint, although a surprisingly high strength was obtained for the APS-APS samples. A significantly lower MC content of 4,9 % and a remarkably low value of 1,7 %, was found for the APS and AJP, respectively, compared with 9,2% for the US. The significantly lower MC combined with an assumed increased hydrophobicity of the acetylated wood possible causes a less effective MUF-wood bonding, or adhesion, compared with that of the unmodified wood. Possible, so-called over penetration of the MUF resin in the acetylated wood could also be an explanation for the poor wood-adhesive anchoring. The MOE of the individual APS, AJP and US specimens was 12,6, 8,3 and 11,4 GPa, respectively, indicating a significantly lower mechanical performance of AJP, and hence also of finger-joints of AJP, despite its very low MC, possible due to a higher microfibril angle in the cell walls in juvenile wood compared with mature wood. No clear correlation was found between the MOR and density of the acetylated samples.For the samples exposed to a water-soak-drying cycle, the highest MOR, and lowest reduction of 14 % compared with the unexposed state, was obtained for the US-US samples, whereas all samples involving the acetylated wood showed a distinctly higher reduction. The MOR of the AJP-AJP and AJP-US samples were reduced with 47 % and 50 %, respectively, while the MOR of the APS-APS and APS-US samples were reduced with 43 % and 23 %, respectively. It should be emphasized, however, that after the standard drying-time, which was the same for all samples, the acetylated samples, compared with the untreated ones, did not dry out to the same level as for the dry unexposed state, i.e. the acetylated samples had a high MC of ca 30-40% in these MOR tests. This high MC level could be the main reason for the dramatic strength losses. Furthermore, a less efficient wood-MUF adhesion as well as the drying under acidic conditions may also be possible causes for the reduced bending strength of the finger-jointed samples with acetylated wood.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)