Techno-economic analysis of demand flexibility from heat pumps for multi-family buildings in Sweden based on two case studies

Detta är en Master-uppsats från KTH/Energiteknik

Sammanfattning: Sweden is undergoing energy transition to become a zero-carbon economy with electricity production aims at 100% from renewable resources by 2040. Sweden also has a national goal to have fossil-free vehicle fleet by 2030. The increasing share of intermittent renewable resources creates growth in mismatches between electricity supply and demand. Demand flexibility provides solution to imbalances in power system where the prosumers can regulate their energy consumption. Demand response (DR) mechanism could be beneficial to power gird stability. Electric heat pumps serve as a pool of flexible load meanwhile the thermal inertia of the residential buildings serves as thermal energy storage. In this thesis, a techno-economic analysis of demand flexibility from heat pumps for residential buildings located in central Örebro is carried out with assistance of building energy simulations. This thesis aims to improve the intelligence of this existing buildings by comprehending the size of thermal inertia availability according to different heat demand, building envelope materials, ventilation systems, weather conditions and user behaviors. Two multi-family residential buildings, Klockarängsvägen and Pärllöken, are selected for case study and compared in terms of thermal inertia and avoided peak power fees in avoided peak power fee from flexible heat pump loads. Both buildings use heat pumps for space heating and domestic hot water supply. Electricity billings are subscribed to power tariff scheme, which makes peak power shifting more profitable. On the coldest day scenario when the ambient temperature is -20°C, Pärllöken’s indoor temperature drops from 21°C to 19.1°C if heat pump is turned off for an hour. Klockarängsvägen’s indoor temperature drops from 21°C to 16.6°C if heat pump is turned off for an hour. At the lowest indoor temperature setpoint of 18°C, Pärllöken demonstrates a maximum power-shift capacity of 25 kW and heatshift capacity of 75 kWh on the coldest day. That of Klockarängsvägen is a maximum power-shift capacity of 20 kW and heat-shift capacity of 20 kWh. With larger building thermal inertia and more power-shift capacity, Pärllöken is undoubtedly the winner thanks to concrete wall materials, heavier building thermal mass, balanced ventilation, heat recovery system, and higher window class. In economic analysis, based on the proposed energy models, two control strategy options in Pärllöken are considered. Economic analysis focuses on winter season from October to March. Option 1 operates heat pump in variable capacity control mode at part load capacity. Option 2 operates in fixed capacity on/off -4- control. In winter season, Pärllöken saves 1 646 SEK in Option 1 and 2 273 SEK in Option 2. Klockarängsvägen only considers Option 1 for economic analysis, which results in 20 948 SEK avoided peak power fee. Option 2 for Klockarängsvägen exceeds indoor temperature setpoint very quickly mainly due to poorer building envelope insulation in which conserves lower thermal inertia.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)