Generation of Control Logic from Ordinary Speech

Detta är en Kandidat-uppsats från Högskolan i Halmstad/Akademin för informationsteknologi

Sammanfattning: Developments in automatic code generation are evolving remarkably fast, with companies and researchers competing to reach human-level accuracy and capability. Advancements in this field primarily focus on using machine learning models for end-to-end code generation. This project introduces the system CodeFromVoice, which explores an alternative method for code generation. This method relies on existing Natural Language Processing models combined with traditional parsing methods. CodeFromVoice shows that this approach can generate code from text or transcribed speech using Automatic Speech Recognition. The generated code is limited in complexity and restricted to the context of an existing application but achieves a Word Error Rate of less than 25%.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)