Driver Behavior Classification in Electric Vehicles

Detta är en Master-uppsats från Göteborgs universitet/Institutionen för data- och informationsteknik

Sammanfattning: Studies have shown that driving style affects the energy consumption of electric vehicles, with aggressive driving consuming up to 30% more energy than moderate driving. Therefore, modeling of aggressive driving can provide a more precise estimation of the energy consumption and the remaining range of a vehicle. This study proposesdriver behavior classification on vehicle-based measurements through several deep learning models: convolutional neural networks, long short-term memory recurrent neural networks, and self-attention models. The networks have been trained on two naturalistic driving datasets: a labeled dataset generated from a test vehicle on-siteat Volvo Cars and unlabeled data collected from co-development Volvo Cars vehicles. The latter dataset has been annotated following rules and driving parameters quantifying the aggressiveness of driving style. The implemented models achieve promising results on both datasets, with the one-dimensional convolutional neural network yielding the highest test accuracy throughout experiments. One of our contributions is to use self-attention and deep convolutional neural networks with joint recurrence plots, which are appropriate for longer sequences because they bypass sequential training. The study also explores several active learning techniques suchas uncertainty sampling, query by committee, active deep dropout, gradual pseudo labeling, and active learning for time-series data. These techniques showed variable results, with uncertainty sampling performing consistently better than randomsampling. This study confirms the effectiveness of machine learning models in classifying driver behavior. It also shows that active learning can considerably decrease the need for training data.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)