Dynamic analysis of high-rise timber buildings : A factorial experiment

Detta är en Uppsats för yrkesexamina på avancerad nivå från Luleå tekniska universitet/Institutionen för samhällsbyggnad och naturresurser

Sammanfattning: Today high-rise timber buildings are more popular than ever and designers all over the world have discovered the beneficial material properties of timber. In the middle of the 1990’s cross-laminated timber (CLT), was developed in Austria. CLT consists of laminated timber panels that are glued together to form a strong and flexible timber element. In recent years CLT has been on the rise and today it is regarded as a good alternative to concrete and steel in the design of particularly tall buildings. Compared to concrete and steel, timber has lower mass and stiffness. A high-rise building made out of timber is therefore more sensitive to vibration. The vibration of the building can cause the occupants discomfort and it is thus important to thoroughly analyze the building’s dynamic response to external excitation. The standard ISO 10137 provides guidelines for the assesment of habitability of buildings with respect to wind-induced vibration. The comfort criteria herein is based on the first natural frequency and the acceleration of the building, along with human perception of vibration. The aim of this thesis is to identify the important structural properties affecting a dynamic analysis of a high-rise timber building. An important consequence of this study is hopefully a better understanding of the interactions between the structural properties in question. To investigate these properties and any potential interactions a so-called factorial experiment is performed. A factorial experiment is an experiment where all factors are varied together, instead of one at a time, which makes it possible to study the effects of the factors as well as any interactions between these. The factors are varied between two levels, that is, a low level and a high level. The design of a factorial experiment includes all combinations of the levels of the factors. The experiment is performed using the software FEM-Design, which is a modeling software for finite element analysis. A fictitious building is modelled using CLT as the structural system. The modeling and the subsequent dynamic analysis is repeated according to the design of the factorial experiment. The experiment is further analyzed using statistical methods and validated according to ISO 10137 in order to study performance and patterns between the different models. The statistical analysis of the experiment shows that the height of the building, the thickness of the walls and the addition of mass are important in a dynamic analysis. It also shows that interaction is present between the height of the building and the thickness of the walls as well as between the height of the building and the addition of mass. Most of the models of the building does not satisfy the comfort criteria according to ISO 10137. However, it still shows patterns that provides useful information about the dynamic properties of the building. Lastly, based on the natural frequency of the building this study recognizes the stiffness as more relevant than the mass for a building with CLT as the structural system and with up to 16 floors in height.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)