Training Multi-Agent Collaboration using Deep Reinforcement Learning in Game Environment

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Deep Reinforcement Learning (DRL) is a new research area, which integrates deep neural networks into reinforcement learning algorithms. It is revolutionizing the field of AI with high performance in the traditional challenges, such as natural language processing, computer vision etc. The current deep reinforcement learning algorithms enable an end to end learning that utilizes deep neural networks to produce effective actions in complex environments from high dimensional sensory observations, such as raw images. The applications of deep reinforcement learning algorithms are remarkable. For example, the performance of trained agent playing Atari video games is comparable, or even superior to a human player. Current studies mostly focus on training single agent and its interaction with dynamic environments. However, in order to cope with complex real-world scenarios, it is necessary to look into multiple interacting agents and their collaborations on certain tasks. This thesis studies the state-of-the-art deep reinforcement learning algorithms and techniques. Through the experiments conducted in several 2D and 3D game scenarios, we investigate how DRL models can be adapted to train multiple agents cooperating with one another, by communications and physical navigations, and achieving their individual goals on complex tasks.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)