Development of a GC Method for the Quantification of Short Chain Carboxylic Acids in Aqueous Solution

Detta är en Kandidat-uppsats från Linköpings universitet/Institutionen för fysik, kemi och biologi

Sammanfattning: Petroleum powered vehicles emit volatile organic compounds (VOCs) through combustion that contributes to the pollution of the environment. A technique in the 1970s was developed to decrease these emissions, especially for nitrogen oxides (NOx) and sulphuric oxides (SOx) which is called exhaust gas recirculation (EGR). The technique works by recirculating a portion of the combusted gas back into the engine, this limits the NOx and SOx emissions because of lower temperatures and less available oxygen. The problems that follow these effects is the formation and condensation of acids that corrode the material of the EGR system, which are created by many different reactions. It is of importance to understand how the compounds in the EGR system behaves through analysis of authentic and simulated condensates, which is why a quantitative method for these compounds are of interest. The aim of the project was to develop a simple quantitative analysis method for formic acid, acetic acid, and lactic acid in aqueous solution, which was done at Gränges Sweden AB. The technique used for detection and quantification was gas chromatography (GC) coupled to a flame ionization detector (FID) and a water compatible polyethylene glycol (PEG) column. Fractional factorial design (FFD) was used for determination of adequate operating parameters of the GC method and the sample preparation. Sample preparation only required filtration and pH adjustment prior to direct aqueous injection (DAI) to the chromatographic instrument. Detection of the analytes was very difficult because of non-compatibility with the FID, and quantification of asymmetric peak shapes made this problem worse, omitting lactic acid from further analysis. Limit of detection (LOD) and limit of quantification (LOQ) was 490 and 1640 ppm for formic acid and 120 and 400 ppm for acetic acid, with an injection volume of 0.3 μL and split ratio 10:1. Limits were too high for every EGR sample leaving no peaks detected for the sample preparation used. Further development should be done with complementary techniques and sample reprocessing in order to quantify the compounds.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)