Methane fluxes in lakes at different spatiotemporal scales

Detta är en Kandidat-uppsats från Linköpings universitet/Institutionen för tema

Sammanfattning: Freshwater bodies such as lakes release the greenhouse gas methane (CH4) into the atmosphere. Global emissions from lakes are estimated to emit more CH4 than oceans, despite that lakes occupies a much smaller global land area. Lakes are therefore significant components for global budgets of CH4. Accurate global estimations of lakes are troublesome, partly because of the spatial and temporal variability of CH4 fluxes, making regional and global assessments filled with uncertainties. Yet, few studies consider the spatial and temporal variability of CH4 fluxes. Therefore, this study investigates the spatial and temporal variability of CH4 fluxes in lakes at different scales. Measurements were made during two field campaigns in lake Venasjön and Parsen, located in the municipality of Söderköping, Sweden. We used the commonly used floating chamber (FC) method for CH4 flux measurements. In order to investigate the small-scale flux variability, we redeveloped the FC-method by constructing two grids consisting of seven FCs distributed approximately 1m apart from each other. One grid was placed at the shallow zone at the inflow of each lake and the other at the lakes deepest zone. By sampling the grid several times every field campaign, spatial and temporal variability of fluxes at different scales could be measured. Overall, we found a significant difference of CH4 fluxes in both lakes depending on field campaign and grid location. Our results also indicate that there is a small-scale variability of CH4 fluxes in lakes. Our hope is that these findings can illustrate the importance of investigating lake fluxes at small spatial and temporal scales.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)