Terrain Classification to find Drivable Surfaces using Deep Neural Networks : Semantic segmentation for unstructured roads combined with the use of Gabor filters to determine drivable regions trained on a small dataset

Detta är en Master-uppsats från KTH/Robotik, perception och lärande, RPL

Sammanfattning: Autonomous vehicles face various challenges under difficult terrain conditions such as marginally rural or back-country roads, due to the lack of lane information, road signs or traffic signals. In this thesis, we investigate a novel approach of using Deep Neural Networks (DNNs) to classify off-road surfaces into the types of terrains with the aim of supporting autonomous navigation in unstructured environments. For example, off-road surfaces can be classified as asphalt, gravel, grass, mud, snow, etc. Images from the camera mounted on a mining truck were used to perform semantic segmentation and to classify road surface types. Camera images were segmented manually for training into sets of 16 and 9 classes, for all relevant classes and the drivable classes respectively. A small but diverse dataset of 100 images was augmented and compiled along with nearby frames from the video clips to expand this dataset. Neural networks were used to test the performance for the classification under these off-road conditions. Pre-trained AlexNet was compared to the networks without pre-training. Gabor filters, known to distinguish textured surfaces, was further used to improve the results of the neural network. The experiments show that pre-trained networks perform well with small datasets and many classes. A combination of Gabor filters with pre-trained networks can establish a dependable navigation path under difficult terrain conditions. While the results seem positive for images similar to the training image scenes, the networks fail to perform well in other situations. Though the tests imply that larger datasets are required for dependable results, this is a step closer to making the autonomous vehicles drivable under off-road conditions.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)