Deep Ring Artifact Reduction in Photon-Counting CT

Detta är en Master-uppsats från KTH/Fysik

Sammanfattning: Ring artifacts are a common problem with the use of photon-counting detectors and commercial deployment rests on being able to compensate for them. Deep learning has been proposed as a candidate for tackling the inefficiency or high cost of traditional techniques. In that spirit, we propose a new approach to ring artifact reduction, namely one that employs Residual Networks in sinogram domain. We train them on data simulated via a realistic photon-counting CT model based on numerical phantoms of real scans acquired by the KiTS19 Challenge dataset. By exploring various architectures we find that shallow ResNets achieve a significant artifact reduction by staying more true to the ground truth in terms of not introducing new artifacts. All networks introduce a smoothing effect which is attributed to the use of MSE as a loss function. An alternative training scheme using patches instead of whole sinograms is tested and it shows a slightly improved model stability. Lastly, we demonstrate via a performance metric study that common metrics are not suitable for quantifying the performance in this problem, save for a potential new approach in the virtual mono-energetic domain.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)