Den geografiska klimatfaktorns inverkan på energiberäkningar över ett varierande klimat

Detta är en Kandidat-uppsats från Jönköping University/JTH, Byggnadsteknik och belysningsvetenskap

Sammanfattning: In 2017, the National Board of Housing, Building and Planning changed the calculation method for calculating a building's energy performance. The main difference is the change from specific energy use to primary energy. The change brought, among other things, a new factor, the geographical adjustment factor Fgeo. The new adjustment factor aims to calculate energy performance to give a more even result to be able to compare different buildings more easily across the country. Previous research on the new calculation method has been done and disadvantages of this method have been expressed, both by municipalities and private individuals. However, the criticism is directed at other parts of the calculation formula than the geographical adjustment factor. The efficiency of the geographical adjustment factor is therefore tested to see if the variable is reliable regardless of geographical position when calculating the primary energy. The building's primary energy in relation to requirements is also compared with the specific energy use and its requirements. The comparison is made for both district heating and electricity as energy supply for the building. The work is based on a document study which is then used and applied in a planned experiment. The experiment uses the program Revit to build a building to calculate energy performance in four Swedish locations. Specific energy use is calculated in Bv2, conversion to primary energy is done in Mathcad.  Results are given in both primary energy and specific energy use. The results show that the building's primary energy differs between the selected locations and their different climates and depending on the energy source.    The calculation of primary energy gives a difference in results for both energy sources. It is shown that the utilization rate for primary energy is lower than specific energy use in relation to the respective requirements when the building is supplied with district heating. In rock heating, it is shown that the utilization rate for primary energy is greater than for specific energy use.  The work discusses the produced result and its analysis. Why there is a difference between the two different calculation methods is discussed and further questions are asked about the result produced.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)