Simulation and Analysis of Ultrasonic Wave Propagation in Pre-stressed Screws

Detta är en Uppsats för yrkesexamina på avancerad nivå från Luleå tekniska universitet/Institutionen för system- och rymdteknik

Författare: Erik Andrén; [2019]

Nyckelord: ;

Sammanfattning: The use of ultrasound to measure preload in screws and bolts has been studied quite frequently the last decades. The technique is based on establishing a relationship between preload and change in time of flight (TOF) for an ultrasonic pulse propagating back and forth through a screw. This technique has huge advantages compared to other methods such as torque and angle tightening, mainly because of its independence of friction. This is of great interest for Atlas Copco since it increases the accuracy and precision of their assembly tools. The purpose of this thesis was to investigate ultrasonic wave propagation in pre-stressed screws using a simulation software, ANSYS, and to analyse the results using signal processing. The simulations were conducted in order to get an understanding about the wavefront distortion effects that arise. Further, an impulse response of the system was estimated with the purpose of dividing the multiple echoes that occur from secondary propagation paths from one other. The results strengthen the hypothesis that the received echoes are superpositions of reflections taking different propagation paths through the screw. An analytical estimation of the wavefront curvature also shows that the wavefront distortion due to a higher stress near the screw boundaries can be neglected. Additionally, a compressed sensing technique has been used to estimate the impulse response of the screw. The estimated impulse response models the echoes as superpositions of secondary echoes, with significant taps corresponding to the TOF of the shortest path and a mode-converted echo. The method is also shown to be stable in noisy environments. The simulation model gives rise to a slower speed of sound than expected, which most likely is due to the fact that finite element analysis in general overestimates the stiffness of the model.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)