Electromagnetic Phase Engineering With Metamaterials

Detta är en Master-uppsats från KTH/Tillämpad fysik

Sammanfattning: Metamaterials are artificially designed materials with desired electromagneticresponses for advanced wave manipulation. Their key constituent is often somenoble metal, thanks to its well localized plasmonic effects with highextinction cross section. In this project, a metamaterial based onmetal-insulator-metal (MIM) structure is investigated to create a compactplanar reflector which mimics the function of a parabolic mirror. In such ametamaterial, each MIM unit is essentially a sub-wavelength resonator whichexhibits magnetic-dipole resonance. To achieve focusing effect, phase shift onreflected wave by each MIM unit upon a plane-wave incidence is calculatedrigorously through finite-element method. By carefully selecting unitgeometries and thereby introducing a phase gradient along the reflector plane,one can control propagation direction of reflected wave at each reflectorposition. The principle can be explained in terms of either ray-optics theoryor generalized Snell’s law. As a particular demonstration, we have designed inthe thesis a planar reflector consisting of eleven MIM units with a totaldevice width of 5.5 µm. FEM simulation showed that the reflector focuses lightat 1.2 µm wavelength with a nominal focus length of 6 µm. Such compactmetamaterial devices can be potentially fabricated on chips for sensing andtelecom applications, circumventing many inconveniences of includingconventional lenses in an optical system.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)