High-Frequency Voltage Distribution Modelling of a Slotless PMSM from a Machine Design Perspective

Detta är en Master-uppsats från KTH/Elkraftteknik

Sammanfattning: The introduction of inverters utilizing wide band-gap semiconductors allow for higher switching frequency and improved machine drive energy efficiency. However, inverter switching results in fast voltage surges which cause overvoltage at the stator terminals and uneven voltage distribution in the stator winding. Therefore, it is important to understand how next generation machine drives, with higher switching frequency, affect the voltage distribution. For this purpose, a lumped-parameter model capable of simulating winding interturn voltages for the wide frequency range of 0-10 MHz is developed for a slotless PMSM. The model includes both capacitive and inductive couplings, extracted from 2D finite element simulations, as well as analytically estimated resistive winding losses. The developed model of a single phase-winding is used to investigate how machine design aspects such as insulation materials and winding conductor distribution affects both voltage distribution and winding impedance spectrum. Validation measurements demonstrate that the model is accurate for the wide frequency range. The sensitivity analysis suggests that the winding conductor distribution affect both impedance spectrum and voltage distribution. For the slotless machine, capacitance between the winding and the stator is several times smaller than capacitance between turns. Therefore, the high-frequency effects are dominated by the capacitance between turns. Insulation materials that affect this coupling does therefore have an impact on the impedance spectrum but does not have any significant impact on the voltage distribution.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)