Utvärdering av vätgaslagring för att reducera eleffektuttaget i en kommersiell byggnad med solelproduktion

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Byggteknik och byggd miljö; Uppsala universitet/Byggteknik och byggd miljö

Sammanfattning: Hydrogen can be produced by solar power driven electrolysis and then be long-termed stored until an electrical demand emerge. Therefore, hydrogen energy storage have the potential to solve the issues with seasonal energy mismatch that generally occur in buildings with solar production. The process is done without any emissions, since the input and output are electricity from renewable resources, water, oxygen and heat. In this master thesis the purpose is to evaluate how a hydrogen energy storage can be used in a commercial building in order to reduce its grid power peaks. This is investigated by creating a model which simulates a hydrogen system, combined with a battery, in a grid-connected building in Uppsala. The model dimensions the system components by using six different operation strategies. The potential of using hydrogen storage in a commercial building is evaluated with respect to its energetic and economic feasibility. The result indicates that the building’s grid power peaks can be reduced by integrating a hydrogen system, and thereby savings in terms of electricity and heat are achieved. However, the net present value is negative for all operation strategies, which means that the investment is non-profitable. By varying several factors in a sensitivity analysis, it is discovered that the investment cost must be reduced in combination with a higher monthly power fee in order to make the investment profitable. There are, however, other values that can motivate an investment in a hydrogen system. An energy storage increases the flexibility in a building and also makes the building more robust towards power outages and high electricity prices. These qualities might be more desirable in a future electrical power system with more intermittent power production.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)