Modeling of the immune response during virus infection of the human respiratory tract

Detta är en Master-uppsats från Lunds universitet/Avdelningen för Biomedicinsk teknik

Författare: Mikaela Giegold; [2018]

Nyckelord: Technology and Engineering;

Sammanfattning: In this master thesis a temporal model of the dynamics between virus and the immune system during a HRV infection was developed. The model was utilized to achieve numerical estimates for parameters governing the mechanisms in the immune system. Through a sensitivity analysis the interplay between different cells in the model was examined. The reliability of the parameter estimates were evaluated through an identifiability analysis. The model was able to capture the dynamics of virus and the majority of the mechanisms included from the immune system. The sensitivity analysis proved that the outcome of the infection was highly sensitive for changes of the parameters governing the early immune response, production and removal of virus. Lastly the identifiability analysis showed that the model and available data were sufficient to achieve reliable parameter estimates. Combined with another model that takes the spatial effects into account this model could be used to simulate the infection and immune dynamics in the human lung. With such a model hypothesis regarding the differences in viral occurrence between upper and lower respiratory tract could be tested.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)