Removal of pharmaceutical residues from wastewater

Detta är en Uppsats för yrkesexamina på avancerad nivå från KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Sammanfattning: Today, pharmaceutical residues are widely found in nature as a cause of the extensive use of human and veterinary medicine. The pharmaceutical residues have shown to have a damaging impact on flora and fauna. Wastewater Treatment Plants (WWTPs), today, are not designed for pharmaceutical removal, which calls for new methods and the implementation of these to avoid increased concentrations of pharmaceutical residues in nature. This thesis addresses three main areas. Firstly, a pre-study regarding the prevalence of pharmaceutical residues at different parts of a WWTP and in the nearby river, secondly, an evaluation of removal of pharmaceutical residues using ozone and, thirdly, the construction of a pilot plant scale Activated Carbon (AC) unit and an evaluation of its capacity for pharmaceutical and ozone removal. This work was done in order to verify the quality of a future full-scale unit including the advanced techniques ozone and AC that will be implemented at a WWTP for pharmaceutical removal. The pre-study shows that the total concentration of the Active Pharmaceutical Ingredients (APIs) was largest at the inlet (93.8 mg/L) and decreased throughout the process steps to be the lowest at the outlet (5.6 mg/L). Paracetamol was found in the highest concentration (86.5 mg/L) at the inlet but could not be detected in the outlet. In the recipient none of the APIs could be found. However, caffeine was detected in the recipient. The pilot plant studies were performed in a batch process, one at high ozone generation and one at low ozone generation. The pilot test at high ozone generation showed that all of the measured APIs were below their Limit of Quantification (LOQ) after 2 minutes. The pilot test at low ozone generation showed a total API-removal of 44% after 7 minutes, 78% after 13 minutes, 97% after 20 minutes and more than 99% after 60 minutes. All of the APIs were below their LOQ after 180 min. The AC-filter construction mirrored the conditions within a full-scale unit as closely as possible and was scaled by the superficial velocity. The AC-filter showed an ozone removal of approximately 99% and removed all pharmaceutical residues apart from Ranitidine which was decreased by 76%.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)