Wear resistance of heat-treated Advanced High Strength Steels and casting

Detta är en Master-uppsats från Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Författare: Joan Morata Royes; [2020]

Nyckelord: ;

Sammanfattning: The necessity to improve the durability of the machinery used in the milling industry has lead to several types of research. One study is focused on the plates that are located in the stationary and moving jaws of crushers to diminish particles sizes of Gneiss and Diabase rocks. Thus, one type of approach to increase its durability is by reducing the material loss of the plates. Amongst all the parameters to reduce the wear ratio that includes inputs from geometry to load, just the hardness input of the material can be in constant development. Consequently, there are two well-known types of heat treatment that can produce this change in hardness and are named Carbide Free Bainite (CFB) and Quenching and Partitioning (QP). In this master thesis the topic is to perform the QP heat treatments for two compositions A and B to obtain the microstructure of the steels that consist in a mix of austenite, bainite and martensite which considerably increase the hardness while the toughness is not drastically reduced due to the austenite soft phase. Five samples have been studied at four different partitioning temperatures: QP250 A, QP180 B, QP210 B, QP240 B and Mn Steel as it is the composition most used nowadays in the industry. In order to characterise both mechanical properties and microstructural features, different analysis had been performed with Micro-indentations, Charpy-V, Gouging Abrasion Tests, Optical Microscopy, Scanning Electron Microscopy and X-Ray Diffraction. These analysis had been done in the samples before and after wear as a result in change of the microstructure. As the abrasive-impact of the rocks collide with the sample, austenite transforms to martensite by induced plasticity called TRIP effect. Thus, the surface of the alloy is harder than the bulk material as no austenite is found and the wear ratio is seen to be improved. The results have shown several behaviours. Austenite transforms in its majority to fresh martensite which is an unstable martensitic phase but harder than tempered martensite that is the stable martensitic phase. Moreover, the difference in hardness between the bulk and the surface produce an affected depth layer as a consequence of the abrasive-impact penetration of rocks in which the microstructure has fully transformed to martensite on the surface and the austenite phase increases as it goes further inside the steel. The thinner this layer is, the better wear ratio presents the alloy. From all the samples, the best combination of hardness and toughness is for QP210 B.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)