Grid connected large-scale energy storage : Literature review regarding present technology and application, with a complementary case study that investigates the profitability of storage within a wind farm

Detta är en Master-uppsats från Umeå universitet/Institutionen för tillämpad fysik och elektronik

Författare: Per Skoglund; [2017]

Nyckelord: electrical energy storage; EES;

Sammanfattning: In the transition from traditional power plants to more environmentally friendly alternatives will generate a need for more flexibility in production, transmission and consumption. Energy storage can be provide the flexibility that are required to continue to have a robust and stable electrical system. The purpose of this report is to give an overview of the electrical energy storage technologies. The classification of energy storage technologies used in this report is mechanical, chemical and electrical. In these three categories were ten different technologies presented with function, advantages, disadvantages, degree of maturity and research area for each technology. The distribution between the globally operational energy storage technologies were presented. Also the framework and regulations for actors to own and operate an energy storage in Sweden. This review was complemented with a case study about connecting a lithium ion battery system to a wind farm. The case investigated the profitability for 20 MW wind farm with a 12 MW and 18 MWh energy storage system for a five and ten-year period. The utilization of the storage was optimized with \textit{What's best} for three different investment cost. The review were done in order to answer: what is the futures energy storage technology?, what applications can be replaced by energy storage for an electricity producer? and what will the effects be of the new actor Aggregator? The result from comparing three different prices for lithium ion batteries resulted in a non-profit scenario for all the cases in a five-year period. There were a maximum, minimum and predicted futuristic price, which generated a loss of 731, 220 and 76.6 MSEK for respective case. Only the futuristic price for a ten-year period indicated an profit. The conclusion that can be drawn from this case study is that energy storage is too expensive and the extra income from utilization of the energy storage is not enough to motivate an energy storage investment. There are not a single technology that possesses all of the required properties for the applications. In the future there will be a combination of technologies to cover all the applications. For the seasonal storage pumped hydro and compressed air are most promising technologies. The flywheels and supercapacitors can contribute with short powerful burst of energy that are needed for power quality and operating reserves. For the more wide range application such as power fleet optimization and integrate the renewable energy production, batteries in form of lithium ion battery and sodium-sulfur battery will most probably be used. For electricity producers energy storage can replace existing solutions. Instead of using diesel generators for black start services, an battery can be used. Also the power quality could be enhanced with batteries acting as filters. The process can be more utilized in a more efficient way with an energy storage. The aggregator actor gathers small variable load from e.g several houses and participate on the electricity market. This actor will level out the differences in power demand during the day. It will reduce the losses and reduce the need for grid investments in both the transmission and distribution networks. It would also generate more available frequency reserves and probably change how the market is paying for the generated benefits.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)