Least Squares Monte Carlo-metoden & korgoptioner : En kvantitativ studie

Detta är en Master-uppsats från Umeå universitet/Institutionen för matematik och matematisk statistik

Sammanfattning: Inom bank och försäkringsbranschen finns behov av framtidsprognoser och riskmått kopplade till finansiella instrument. För att skapa prisfördelningar, som kan användas som grund till olika riskmått, används ibland nästlad simulering. För att göra detta simuleras först en stor mängd yttre scenarion för någon tillgång, som används i ett finanisellt instrument. Vilket görs genom att priser simuleras över en tidsperiod. Detta utgör tidshorisonten varvid prisfördelningen befinner sig. Utifrån varje yttre scenario simuleras sedan ett antal inre. Som i sin tur används för att prissätta finansiella instrumentet i det yttre scenariot. En metod som används för att prisätta de yttre scenariona är Monte Carlo-metoden, vilket kräver ett stort antal inre scenarion för att prissättningen ska bli korrekt. Detta gör metoden krävande i tidsåtgång och datorkraft. Least Squares Monte Carlo-metoden är en alternativ metod som använder sig av regression och minstakvadratmetoden för att utföra prissättningen med ett mindre antal inre scenarion. En regressionsfunktion anpassas efter yttre scenarionas värden och används sedan för att omvärdera dessa, vilket minskar felen som ett mindre antal slumptal annars skulle ge. Regressionsfunktionen kan även användas för att prissätta värden utanför de som den anpassas efter, vilket gör att den kan återanvändas vid liknande beräkningar. I detta arbete undersöks hur väl Least Squares Monte Carlo-metoden beskriver prisfördelningen för korgoptioner, som är optioner med flera underliggande tillgångar. Tester utförs med olika värden för parametrarna och vikt läggs vid vilken effekt yttre scenarionas längd har, samt hur väl priserna beskrivs i prisfördelningens svansar. Resultatet är delvis svåranalyserat på grund av många extrema värden, men visade på svårigheter med prissättningen vid längre yttre scenarion. Vilket kan bero på att regressionsfunktionen som användes hade svårt att anpassa sig efter och beskriva mer spridda prisfördelningar. Metoden fungerade också sämre i den nedre delen av prisfördelningen, något som den dock delar med Standard Monte Carlo. Mer forskning behövs för att undersöka vilken effekt andra uppsättningar regressionsfunktioner skulle ha på metoden.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)