Deep Learning for Semantic Segmentation of 3D Point Clouds from an Airborne LiDAR

Detta är en Master-uppsats från Linköpings universitet/Datorseende

Sammanfattning: Light Detection and Ranging (LiDAR) sensors have many different application areas, from revealing archaeological structures to aiding navigation of vehicles. However, it is challenging to interpret and fully use the vast amount of unstructured data that LiDARs collect. Automatic classification of LiDAR data would ease the utilization, whether it is for examining structures or aiding vehicles. In recent years, there have been many advances in deep learning for semantic segmentation of automotive LiDAR data, but there is less research on aerial LiDAR data. This thesis investigates the current state-of-the-art deep learning architectures, and how well they perform on LiDAR data acquired by an Unmanned Aerial Vehicle (UAV). It also investigates different training techniques for class imbalanced and limited datasets, which are common challenges for semantic segmentation networks. Lastly, this thesis investigates if pre-training can improve the performance of the models. The LiDAR scans were first projected to range images and then a fully convolutional semantic segmentation network was used. Three different training techniques were evaluated: weighted sampling, data augmentation, and grouping of classes. No improvement was observed by the weighted sampling, neither did grouping of classes have a substantial effect on the performance. Pre-training on the large public dataset SemanticKITTI resulted in a small performance improvement, but the data augmentation seemed to have the largest positive impact. The mIoU of the best model, which was trained with data augmentation, was 63.7% and it performed very well on the classes Ground, Vegetation, and Vehicle. The other classes in the UAV dataset, Person and Structure, had very little data and were challenging for most models to classify correctly. In general, the models trained on UAV data performed similarly as the state-of-the-art models trained on automotive data.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)