Optimering av blåsmaskinstyrning på Bromma reningsverk

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Institutionen för geovetenskaper

Sammanfattning: The aeration step is the most energy consuming process in the wastewater treatment plant, i.e. making the energy usage in this step more efficient is of great concern both in Sweden and world wide. There are some examples of previous studies investigating ways to make the ae- ration control more efficient, though most of these have focused on for example ammonium feedback control rather than blower control which is the main focus of this study. Bromma wastewater treatment plant installed three new blowers in december 2016 functioning as suppliers of air to the aeration step in the bioreactor. Since there are still three old blowers operating at the WWTP, there is a need to control two different types of blowers efficiently. This is challenging since the two blower types have different capacities, efficiency and maxi- mum/minimum air flows and a control strategy that optimizes the operation of these two blower types combined needs to take this into account. Operational data for the blowers was used to generate a second grade polynome for each blower type which gives the efficiency as a function of produced air flow. These polynomes were further utilized to build a script in MATLAB that chooses the most efficient number of blowers operating and at what air flows for a certain total aeration need. The least square method was used to calibrate a model for calculating energy consumption for the simulated control strate- gy. Calculations for energy consumption from the current control strategy and another strategy proposed by the blower deliverer Sulzer were made in order to decide whether the optimized control strategy was an improvement or not. The simulation results and the calculations for energy consumption indicates that the current control strategy at Bromma WWTP is almost as effective as the optimized control strategy. Both strategies sets the new blowers at the first places in the queue. The optimized strategy appears to be more efficient for flows that requires both new and old blowers operating. From the calculations of energy consumption, it was shown that the control strategy from Sulzer de- mands an energy consumption on levels in between the one for the current control strategy and the optimized control strategy. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)