Design and Construction of High Current Winding for a Transverse Flux Linear Generator Intended for Wave Power Generation

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: There is currently a high demand for electric power from renewablesources. One source that remains relatively untapped is the motionof ocean waves. Anders Hagnestål has been developing a uniquelyefficient and simplified design for a point-absorb buoy generator byconverting its linear motion directly into alternating electric power usinga linear PM engine. To test this method, a smaller prototype isbuilt. Its characteristics present some unusual challenges in the designand construction of its winding.Devices of this type typically use relatively low voltage (690V typicallyfor a wind turbine, compared to the 10kV range of traditionalpower plants). To achieve high power, they need high current, whichin turn requires splitting the conductors in the winding into isolatedparallel strands to avoid losses due to eddy currents and current crowding.However, new losses from circulating currents can then arise. Inorder to reduce said losses, the parallel conductors should be transposedin such a way that the aggregate electromotive force the circuitsthat each pair of them forms is minimized.This research and prototyping was performed in absence of advancedindustrial means of construction, with limited space, budget,materials, manpower, know-how, and technology. Manual ingenuityand empirical experimentation were required to find a practical implementationfor: laying the cables, fixing them in place, transferringthem to the machine, stripping their coating at the ends and establishinga reliable connection to the current source.Using theoretical derivations and FEM simulation, a sufficientlygood transposition scheme is proposed for the specific machine thatthe winding is built for. A bobbin replicating the shape of the enginecore is built to lay down the strands.The parallel strands are then organized each into their respectivebobbin, with a bobbin rack and conductor funneling device being designedand constructed to gather them together into a strictly-organizedbundle. An adhesive is found to set the cables in place.Problems with maintaining the orientation and configuration of thecables in the face of repeated torsion are met and solved. A chemicalsolution is used to strip the ends of the conductors, and a reliableconnection is established by crimping the conductors into a bi-metalCu-Al lug.ivIn conclusion, the ideal transposition schemes required to cancelout circulating currents due to magnetic flux leakage are impossibleto put in practice without appropriate technological means. The feasibletransposition scheme turns out to be a simple mirroring of conductors’positions, implemented by building each half of the windingseparately around replicas of the core and then connecting them usingcrimping lugs.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)