On the impact and applicability of network edge computing to reduce network latencies of worldwide client applications

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: This project evaluates the applicability of network edge computing to reduce global latencies of client applications. It determines the dimension of latency reduction network edge computing can provide compared to common cloud computing architectures. Furthermore, this project examines whether Compute@Edge, an exemplary and modern edge computing service, enables the replacement of many latency-sensitive cloud systems by an adequate versatility and a reasonable costbenefit ratio. Compute@Edge is a new, serverless edge computing platform by Fastly built on WebAssembly. A prototype that replicates a globally utilized server of Spotify was implemented on Compute@Edge. To compare the latencies of cloud and edge computing, an experiment captured the latencies of the prototype and the original system using a Spotify client that generated almost 26 million data points from all over the world. Next to the experiment, the implementation of the prototype allows accurate insights into the possibilities of Compute@Edge and whether WebAssembly is a promising approach for edge computing. Successes of this work include data showing that network edge computing can reduce latencies significantly. It offers arguments to ramp up the usage of edge computing, WebAssembly and Compute@Edge for applications that require low latencies. The results of the experiment show that network edge computing is capable of reducing network latency compared to cloud computing by at least 38%. The lower latencies combined with the versatility and feasibility of Compute@Edge show that modern edge platforms enable a much higher utilization for applications like Spotify. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)