Analysis of Prerequisites for Connection of a Large-Scale Photovoltaic System to the Electric Power Grid

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: The deployment of large-scale photovoltaic (PV) systems is rising in the Swedish power system, both in quantity and in system size. However, the intermittent characteristics of the PV production raises questions concerning the stability in the electric power grid, and power output fluctuations from the PV systems can lead to voltage quality issues. Hence, the distribution system operator E.ON Energidistribution and the solar energy developer company Solkompaniet are interested in investigating potential challenges and possibilities related to the integration of large-scale PV systems in the electric power grid. This thesis studies fast voltage variations in the electric power grid due to output fluctuations from large-scale PV systems, and examines the possibility to mitigate the voltage variations by reactive power support strategies in the PV inverters. Four studies are carried out to investigate the prerequisites for establishing large-scale PV systems. Firstly, a worst-case study considering eight existing substations in the electric power grid as well as a new substation is carried out, to examine the impact of different parameters on the voltage variations. Parameters such as transformer operation mode, location of the point of connection, switching mode and load capacity are compared in the study. Further, time series calculations are done to investigate the voltage variations over one year, and a study with an oversized PV system is done to investigate the possibility for increasing the PV capacity without grid reinforcements. Lastly, a study is performed with reactive power compensation from the PV inverters to examine the possibility to maintain a stabilized voltage level at the point of connection. The studies are performed in E.ONs network model in the power system simulator software PSS/E, with data for the transmission grid, the regional grid, and parts of the distribution grid included. PV systems with a rated capacity from 32 MWp and upwards are connected to substations in the regional grid, where fast voltage variations on nominal voltage levels of 20/10 kV are studied and evaluated from the perspective of the power producer. From this thesis, it can be concluded that neither of the implemented studies results in voltage variations that violate E.ONs technical requirements on fast voltage variations in the point of connection. Further, the results from the worst-case study show the importance of analysing the specific system of interest when connecting PV systems, since the properties of the existing system have an impact on the voltage variations. The time series calculations show that the voltage variations over a time period of one year are highly influenced by the PV production and the load capacity in the substation, and the study with an oversized PV system shows the possibility for increasing the PV capacity without curtailing large amounts of active power. Finally, the study with reactive power compensation concludes that grid support strategies in the PV inverters may be a key solution for making optimal use of the existing electric power grid and enabling the continued expansion of large-scale PV systems in the Swedish power system.  

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)