The Metallicity Structure of the Milky Way Halo II : Characterising the distant halo substructure

Detta är en Master-uppsats från Uppsala universitet/Observationell astrofysik

Sammanfattning: The Milky Way galaxy, like all spiral galaxies, is surrounded by a roughly spherical distribution of stars called the halo. The halo was largely formed when the galaxy merged with smaller galaxies. The stellar population of the inner halo is dominated by debris from one major such merging event, called the Gaia-Enceladus-Sausage, and the outer halo population is completely built up by several mergers. To properly understand this accretion history, the halo needs to be investigated out to large distances so that as much substructure as possible can be traced. The substructure is expected to leave an imprint in the halo's metallicity structure. In this thesis, we use a catalogue of intrinsically bright stars, giants, to probe the metallicity structure of the halo to large distances. It contains 205,727 stars that all have photometric metallicities from the Pristine survey and distances derived from isochrone fitting, and reaches down to [Fe/H] = -4.0 dex and out to d = 96.16 kpc. Its purity is 90 % and completeness is 67 %. We calculate the distance errors by Monte Carlo simulations and introduce a new cut in colour that is dependent on metallicity to reduce contaminants in the sample. This introduces a metallicity bias in the sample that we can correct for because we coupled metallicity and colour. The correction is done by computing weights for different metallicity bins. The final catalogue allows us to create metallicity distribution functions of the halo as a function of distance. These show us that as heliocentric distance, the distance from the Galactic centre or the Galactic plane increases, the overall metallicity decreases. At the closest distances, the thick disk metallicity peak at -0.7 dex dominates, but as we move further out this smoothly shifts to -1.3 dex and then to -1.6 dex, representing the inner halo, while a peak at -2.2 dex, representing the outer halo, starts to become visible beyond 6 kpc and dominates the metallicity distribution past 26 kpc. These peaks are remnants of merger events in the halo, with the inner halo peak being due to the massive Gaia-Enceladus-Sausage merger and the outer halo peak being due to the many, low-mass and thus low-metallicity galaxies accreted there. We are able to see signals from the Sagittarius stream and Gaia-Enceladus-Sausage's apocentric pile-ups in the metallicity distribution functions, showing that the halo's metallicity changes with not only distance but also sightline. We also detect a diffuse, very metal-poor cloud in the southern footprint that may be an until now unknown structure. This catalogue and its resulting metallicity distribution functions are thus a suitable addition to literature at the metal-poor and distant end, as well as the faint end where e.g. Gaia mission data is unable to provide metallicities and distances.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)