Modeling of a ball contact with a coated plate

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: During tightening of a screw, the variation in friction will affect the force acting on the joint, especially when tightening using torque as a control parameter. So, it is crucial to have a proper understanding of the contact mechanism and friction in the screw head to joint and thread interfaces. This will make it possible to develop tightening strategies that compensate for the friction variation to assure a better quality of the joint. This understating could be achieved through conducting experiments using a pin on disc tribometer. In the present study, the frictional behavior of three different coatings has been investigated using a tribometer. The study comprises both the experimental and numerical procedures. Experimental tests have been conducted to find the required material inputs for numerical modeling, and also, to log the results required for validation of the simulation results. The Central Composite Design (CCD) method has been employed for the design of experiments where the normal pressure and sliding velocity have been selected as the test parameters (design factors). For the numerical part of the study, the localized finite element model of the contact region of the pin and coated disc has been made in ANSYS. The model represents a portion of the test specimen used in the tribometer so that a high level of refinement could be applied. Two different approaches have been implemented in ANSYS to model the friction coefficient as a function of normal pressure and sliding velocity. The both approaches are based on a mathematical model for friction coefficient which has nine constants that could be determined using the experimental tests’ results. Also, a correction scheme for the contact stiffness has been implemented so that the mesh dependency of the model could be reduced significantly. Finally, the results of the numerical modeling have been compared with those obtained from experiments for friction force. The comparison shows a good agreement between them, proving the accuracy of the utilized numerical model and the correction scheme employed.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)