Maskininlärning: avvikelseklassificering på sekventiell sensordata. En jämförelse och utvärdering av algoritmer för att klassificera avvikelser i en miljövänlig IoT produkt med sekventiell sensordata

Detta är en Kandidat-uppsats från Malmö universitet/Teknik och samhälle

Sammanfattning: Ett företag har tagit fram en miljövänlig IoT produkt med sekventiell sensordata och vill genom maskininlärning kunna klassificera avvikelser i sensordatan. Det har genom åren utvecklats ett flertal väl fungerande algoritmer för klassificering men det finns emellertid ingen algoritm som fungerar bäst för alla olika problem. Syftet med det här arbetet var därför att undersöka, jämföra och utvärdera olika klassificerare inom "supervised machine learning" för att ta reda på vilken klassificerare som ger högst träffsäkerhet att klassificera avvikelser i den typ av IoT produkt som företaget tagit fram. Genom en litteraturstudie tog vi först reda på vilka klassificerare som vanligtvis använts och fungerat bra i tidigare vetenskapliga arbeten med liknande applikationer. Vi kom fram till att jämföra och utvärdera Random Forest, Naïve Bayes klassificerare och Support Vector Machines ytterligare. Vi skapade sedan ett dataset på 513 exempel som vi använde för träning och validering för respektive klassificerare. Resultatet visade att Random Forest hade betydligt högre träffsäkerhet med 95,7% jämfört med Naïve Bayes klassificerare (81,5%) och Support Vector Machines (78,6%). Slutsatsen för arbetet är att Random Forest med sina 95,7% ger en tillräckligt hög träffsäkerhet så att företaget kan använda maskininlärningsmodellen för att förbättra sin produkt. Resultatet pekar också på att Random Forest, för det här arbetets specifika klassificeringsproblem, är den klassificerare som fungerar bäst inom "supervised machine learning" men att det eventuellt finns möjlighet att få ännu högre träffsäkerhet med andra tekniker som till exempel "unsupervised machine learning" eller "semi-supervised machine learning".

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)