A Study of the Loss Landscape and Metastability in Graph Convolutional Neural Networks

Detta är en Master-uppsats från KTH/Matematisk statistik

Sammanfattning: Many novel graph neural network models have reported an impressive performance on benchmark dataset, but the theory behind these networks is still being developed. In this thesis, we study the trajectory of Gradient descent (GD) and Stochastic gradient descent (SGD) in the loss landscape of Graph neural networks by replicating Xing et al. [1] study for feed-forward networks. Furthermore, we empirically examine if the training process could be accelerated by an optimization algorithm inspired from Stochastic gradient Langevin dynamics and what effect the topology of the graph has on the convergence of GD by perturbing its structure. We find that the loss landscape is relatively flat and that SGD does not encounter any significant obstacles during its propagation. The noise-induced gradient appears to aid SGD in finding a stationary point with desirable generalisation capabilities when the learning rate is poorly optimized. Additionally, we observe that the topological structure of the graph plays a part in the convergence of GD but further research is required to understand how.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)