Rating corrumption within insurance companies using Bayesian network classifiers

Detta är en Magister-uppsats från Umeå universitet/Statistik

Författare: Oscar Öhman; [2019]

Nyckelord: ;

Sammanfattning: Bayesian Network (BN) classifiers are a type of probabilistic models. The learning process consists of two steps, structure learning and parameter learning. Four BN classifiers will be learned. These are two different Naive Bayes classifiers (NB), one Tree Augmented Naive Bayes classifier (TAN) and one Forest Naive Bayes classifier (FAN). The NB classifiers will utililize two different parameter learning techniques, which are generative learning and discriminative learning. Generative learning uses maximum likelihood estimation (MLE) to optimize the parameters, while discriminative learning uses conditional likelihood estimation (CLE). The latter is more appropriate given the target at hand, while the former is less complicated. These four models are created in order to find the model best suited for predicting/rating the corruption levels of different insurance companies, given their features. Multi-class Area under the receiver operating characteristic (ROC) curve (AUC), as well as accuracy, is used in order to compare the predictive performances of the models. We observe that the classifiers learnt by generative parameter learning performed remarkably well, even outperforming the NB classifier with discriminative parameter learning. But unfortunately, this might imply an optimization issue when learning the parameters discriminately. Another unexpected result was that the CL-TAN classifier had the highest multi-class AUC, even though FAN is supposed to be an upgrade of CL-TAN. Further, the generatively learned NB performed about as good as the other two generative classifiers, which was also unexpected.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)