Optimization of Rare Earth Metals (REM) addition in high temperature stainless steel grade 253MA.

Detta är en Master-uppsats från KTH/Materialvetenskap

Sammanfattning: The focus of this thesis work is to optimize rare earth metal (REM) addition in Therma 253MA, an austenitic stainless-steel grade in order to get a good trade-off between oxidation resistance property and the amount of big REM inclusions formed. Big REM inclusions are detrimental to material properties and REM is required to be dissolved in the matrix for improving the oxidation resistance. REM optimization can also lead to economical savings for Outokumpu. The distribution of REM between matrix and inclusion is affected by factors such as REM addition, initial oxygen and sulphur contents and time to casting of the melt. The re-oxidation of melt in the tundish also affects the REM distribution. Hence, the effect of these factors on the inclusion characteristics is investigated by analysing samples with different REM additions, using light optical microscope (LOM) and scanning electron microscope (SEM). LOM analysis focussed on stringer inclusion characteristics. SEM+EDS analysis is done using automated "INCA Feature" software with focus on overall inclusion characteristics. Oxidation and creep tests are also performed to study the effect of different REM additions on oxidation and creep behaviour. The results from inclusion analysis show that increasing REM addition and time to casting has a bad effect on stringer and overall inclusion characteristics. The re-oxidation in the tundish influences the inclusion formation, but does not affect the stringer characteristics. The resistance to oxidation of the samples is also compared and is observed to increase within increasing REM addition. Finally, this works suggests an optimal REM addition for Therma 253MA to get a good balance between oxidation resistance and amount of big inclusions.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)