Robust Encapsulation of Yeast for Bioethanol Production

Detta är en Master-uppsats från Högskolan i Borås/Institutionen Ingenjörshögskolan

Sammanfattning: In the future the demand for ethanol is expected to increase greatly due to the rising energy requirements in the world. Lignocellulosic materials are a suitable and potentially cheap feedstock for sustainable production of fuel ethanol, since vast quantities of agricultural and forest residues are available in many countries. However, there are several problems involved in the utilization of lignocellulosic raw materials as sugar source. The most common way of releasing the simple sugars in the material is by dilute acid hydrolysis. This procedure is relatively simple and cheap, but in addition to the sugars it creates inhibitory compounds. These inhibitors make it very hard for the yeast to ferment the hydrolyzate and detoxification is often necessary. One way to overcome this problem is to encapsulate the yeast. Encapsulation is an attractive method since it improves the cells stability and inhibitor tolerance, increases the biomass amount inside the reactor, and decreases the cost of cell recovery, recycling and downstream processing. However, the method does not yet permit long-term cultivation since the capsules used so far are not robust enough. Therefore more studies have to be conducted in order to find methods which produce mechanically robust capsules. The main goal of this paper is to find a suitable method to produce robust capsules using different concentration of the chemicals at different pH and also implementing some modifications such as addition of cross-linkers in preparation procedure. In this paper comparison of three different encapsulation techniques were studied based on the mechanical robustness of the capsules. The three different techniques were calcium mineralized alginate-chitosan capsules, alginate capsules coated with 2% chitosan (2% AC) and genipin crosslinked alginate-chitosan (GCAC) capsules. The results indicate that GCAC capsules are most robust and were good enough for prolonged use since most of the capsules were not deformed in mechanical strength test. There were slight differences in the diameter and membrane thickness before and after swelling. No negative influence was observed on the yeast growth when applying the cross-linker. The results of this study will hopefully add valuable information and helps in further studies using other cross-linkers to prepare robust capsules.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)