Deep neural networks for food waste analysis and classification : Subtraction-based methods for the case of data scarcity

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Signaler och system

Författare: David Brunell; [2022]

Nyckelord: Siamese network; convolutional neural network;

Sammanfattning: Machine learning generally requires large amounts of data, however data is often limited. On the whole the amount of data needed grows with the complexity of the problem to be solved. Utilising transfer learning, data augmentation and problem reduction, acceptable performance can be achieved with limited data for a multitude of tasks. The goal of this master project is to develop an artificial neural network-based model for food waste analysis, an area in which large quantities of data is not yet readily available. Given two images an algorithm is expected to identify what has changed in the image, ignore the uncharged areas even though they might contain objects which can be classified and finally classify the change. The approach chosen in this project was to attempt to reduce the problem the machine learning algorithm has to solve by subtracting the images before they are handled by the neural network. In theory this should resolve both object localisation and filtering of uninteresting objects, which only leaves classification to the neural network. Such a procedure significantly simplifies the task to be resolved by the neural network, which results in reduced need for training data as well as keeping the process of gathering data relatively simple and fast. Several models were assessed and theories of adaptation of the neural network to this particular task were evaluated. Test accuracy of at best 78.9% was achieved with a limited dataset of about 1000 images with 10 different classes. This performance was accomplished by a siamese neural network based on VGG19 utilising triplet loss and training data using subtraction as a basis for ground truth mask creation, which was multiplied with the image containing the changed object.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)