Fluid field analysis on a flexible combustor for a hybrid Solar / Brayton system : A numerical study

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: Recent improvements to concentrating solar dish systems lead to further focus on hybridization systems for small-scale power generation applications. Variability of the solar load creates new requirements for combustion systems. This thesis presents a CFD simulation of the air flow inside a new combustor design for the combination of an impinging air solar receiver and a MGT. The system consists of a LPP tubular combustor with radial main swirler and central pilot burner. Focus is made on the pressure loss at the downstream impinging cooling wall for appropriate flow distribution between reacting and bypass air. Heat transfer is not studied due to lack of time. A fully-hexahedral multi-zones mesh of the system without fuel injection has been generated with Ansys ICEM software, making use of its O-grid capabilities. A realizable k-epsilon model is used for turbulence modelling. Several impinging hole’s diameters are studied to find the right balance between the two streams. Streamlines are also observed to confirm the location of recirculation zones and recommend design improvements.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)