Q-Learning: Ett sätt att lära agenter att spela fotboll

Detta är en M1-uppsats från Högskolan i Skövde/Institutionen för kommunikation och information

Sammanfattning:

Den artificiella intelligensen i spel brukar ofta använda sig utav regelbaserade tekniker för dess beteende. Detta har gjort att de artificiella agenterna blivit förutsägbara, vilket är väldigt tydligt för sportspel. Det här arbetet har utvärderat ifall inlärningstekniken Q-learning är bättre på att spela fotboll än en regelbaserade tekniken tillståndsmaskin. För att utvärdera detta har en förenklad fotbollssimulering skapats. Där de båda lagen har använts sig av varsin teknik. De båda lagen har sedan spelat 100 matcher mot varandra för att se vilket lag/teknik som är bäst. Statistik ifrån matcherna har använts som undersökningsresultat. Resultatet visar att Q-learning är en bättre teknik då den vinner flest match och skapar flest chanser under matcherna. Diskussionen efteråt handlar om hur användbart Q-learning är i ett spelsammanhang.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)