Asset Management of Electrical Transportation Systems with Life Cycle Cost Analysis for Ground Support Equipment: Case Study Stockholm Arlanda Airport

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: We have come a long way in the pursuit of reducing our carbon footprint from our way of living, bycontinuously development of batteries and charging infrastructure for electric vehicles to decrease thedemand for fossil fuels, improving the overall energy efficiency and to increase awareness of the problemto the population. One of the industries, that during the last decades has undergone vast improvements,is the development of the airplane engines due to increased emission regulations, for the aviationindustry, and to reduce the costs of air travel. Despite tighter regulations, global impact from travellingby air is increasing due to the explosive increase in number of travels and travellers. In order to copewith the situation, it is of course necessary to further develop fuel and emission effective airplanes, butalso to study the whole chain of emission sources correlated to the air transport industry. So, whilewaiting for improved airplanes there are well known emission effective technologies that can beimplemented already today – implement electric vehicles as support vehicles at airports.Today, and throughout history, most of the focus of air travel has been on the airplane itself. This thesis,that was carried out at KTH Royal Institute of Technology during late spring and autumn 2018, didinstead study the support vehicles used in airports. In this thesis, a generic economic model wasdeveloped in order to estimate the costs involved when replacing traditionally vehicles to suggestedelectrically propelled alternatives. To test and support the development of an economic model, a casestudy has been carried out at Stockholm Arlanda Airport. This case study included a field study to thementioned airport, and in combination with interviews with former employees from one of the groundhandling companies that are currently active in the airport. Raw data was collected over the equipmentand vehicles currently in use. This data was used to describe the vehicles purpose, requirements and toensure that the alternative electric vehicles proposed would offer at least the same performance as thetraditional vehicles. The developed generic economic model was modulated with five stages thatrepresented a selection of input parameters. The collected data became a result in itself and was used asinput to three concurrent theses.The results from the five stages presents the costs during an investment period of between of one tofifteen years. One of the most significant result could be seen from Stage V. This stage showed that thecombined cost to replace all vehicles currently used, with either all new diesel vehicles or electricalternative vehicles, are lower for electric vehicles than for diesel vehicles. Another significant resultcould be seen from the investigation of Stage IV, Stage IV-B, were the model was modulated to representthe case of replacing a vehicle. The results showed that the Letter and Cargo procedures, that travel thefarthest and has the highest fuel consumption of the investigated vehicles, had negative costs throughthe whole investment period. This means that the expenses will always be lower when these vehicles arereplaced. The model was validated through a sensitivity analysis, performed on the discount rates,depreciation rates and as well as costs for battery replacement during the depreciation period.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)