Indonesian Rural Electrification : What is the most sustainable solution?

Detta är en Master-uppsats från KTH/Energiteknik

Sammanfattning: The Sustainable Development Goal n°7 is calling for a prompt response to guarantee affordable and clean energy for all. While the electrification rate is rapidly increasing around the world, much work still remains to achieve electricity access in remote areas or Non-Interconnected Zones, such as the numerous small islands that compose Indonesia. This thesis work sought to understand which standalone microgrid design would represent the most sustainable solution for a rural electrification challenge, where the final scope is to provide 24 h/d stable and reliable electricity connection to the local communities of Sulawesi, Indonesia. To achieve such a result, two diametrically opposed microgrid layouts are outlined in terms of renewables share: a Business As-Usual Scenario, in which the microgrid is powered by a standard diesel set, and an integrated renewable-based scenario, in which the microgrid envisions the implementation of biopower, PV system and Li-ion batteries as a storage option. A thorough comparison on a series of Key Parameter Indicators (KPIs), such as Carbon Footprint, Levelized Cost Of Electricity and job creation, led to the identification of the renewable-based scenario as the most sustainable option. This system layout resulted in a biomass powered electricity production covering 80% of the total electricity demand, with the remaining 20% supplied by solar power and storage means and a LCOE of 0.18 USD/kWh. At the price of a higher upfront cost than the one of BAU case, the renewable-based alternative entitles a higher profitability when compared to the business-asusual one, together with reduced carbon dioxide emissions and a higher number of jobs directly created.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)